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Abstract. Discharge under open-circuit conditions may be often used to find the drift mobility of
charge carriers in thin films of low-mobility materials. The existing theories of the discharge assume
domination of charge transport in the conduction band. In order to find whether the theories may
be used for interpretation of experimental results in hopping systems a computer simulation was
carried out. It has been shown that direct usage of the existing theories may lead to wrong values of
drift mobility found from the discharge. The method of estimation of real value of mobility in the
temperature range 100–500 K for various values of the decay parameter of the electron localized
wavefunction and for various standard deviations of the energetic distribution of the localized states
is presented in this paper.

1. Introduction

The mobility measurements in low-mobility disordered amorphous and strongly doped
materials started many years ago [1, 2]. The main experimental method used for the
measurements was the so-called time-of-flight (TOF) method. The method consists in
measuring the transient current which is caused by movement of charge carriers injected
into a sample at a surface. A sandwich-type sample is provided with well conducting (mainly
metallic) electrodes. The injected charge move in the external electric field. The drift mobility
µ may be obtained from the expression:

µ = D2

V0ttr
(1)

whereD is the sample thickness, V0 is the voltage applied and ttr is the transition time of charge
carriers through the sample. A characteristic ‘kink’ on the current–time curve corresponds to
the transition time. In the case of well defined band mobility of charge carriers the spatial
concentration of moving charge carriers may be well described by a Gaussian distribution
which broadens as a result of diffusion. Such a kind of charge transport is often called a
Gaussian type of charge transport.

It was observed in the 1970s that some experimental data concerning disordered,
amorphous or strongly doped materials could not be interpreted in this way because no
characteristic ‘kink’ related to the transition time was detected. It was pointed out that such
results were caused by non-Gaussian time development of the packet of charge carriers injected
into the sample. In 1975 Scher and Montroll [3] presented their model of stochastic hopping
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to explain the observed dispersive transport. The time dependence of current in the Scher–
Montroll (SM) model is given by:

I (t) ∝ t−(1−α) for t < ttr (2)

I (t) ∝ t−(1+α) for t > ttr (3)

where the disorder parameter α is a constant. It results from equations (2) and (3) that the
transition time (corresponding to the time of transition of the fastest charge carriers) may be
found from the double logarithmic plot log I (t) against log(t). During the next few years it
was shown that both the multiple-trapping model [4–7] and trap-controlled hopping [8] also
lead to the dispersive transport of charge.

The classical time-of-flight method sometimes cannot be used for very thin samples due
to short-circuits originating during evaporation of the electrodes. In such a case the discharge
under open-circuit conditions may be used to find the drift mobility of charge carriers [9–11].

The theoretical description of discharge under open-circuit conditions was proposed by
Batra et al [12]. No top electrode is used in the open-circuit method. The free surface is
charged using either a corona discharge [12–14] or a low-energetic electron beam [9–11]. The
discharge of the system results from charge transport to the grounded electrode. The time
dependence of the voltage is given by [12]:

V (t) = V0 − µV 2
0

2D2
t (4)

dV

dT
= −µV 2

0

2D2
(5)

for t < ttr and by:

V (t) = D2

2µ

1

t
(6)

dV

dt
= −D2

2µ

1

t2
(7)

for t > ttr . The time corresponding to the voltage V = 0.5 V0 is the transition time of charge
carriers which can be used in equation (1) to obtain the drift mobility.

The model proposed by Batra et al assumes domination of charge transport in the
conduction band and neglects trapping and diffusion [12–14]. In this situation the question
arises of whether the model can be used for description of discharge under open circuit
conditions in hopping systems. It may be expected that the time development of packets
of charge carriers in hopping systems differs from those in systems dominated by transport
via extended states. Depending on the distribution of localized states this may lead either
to dispersive transport or to semi-classical Gaussian-like transport showing a ‘kink’ on the
current–time curve. However, even in the second case the time corresponding to the voltage
V = 0.5 V0 may lead to wrong estimation of the drift mobility due to non-Gaussian time
development of the charge packet. The aim of this paper is to solve the problem of applicability
of equations (4)–(7) for open-circuit discharge in a hopping system in these cases, in which
a ‘kink’ on the current pulses obtained from classical TOF experiments is observed. The
problem of applicability of equations (4)–(7) for dispersive hopping systems will be a subject
of further investigations.

2. Assumptions of the simulation

This paper concerns systems dominated with hopping transport in a narrow band of localized
states at the Fermi level. The basic assumptions of the simulation are as follows:
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(1) It was assumed that the transport of charge is due to hopping of charge carriers among
localized states in a narrow band of states given by a normal distribution.

(2) The states constitute a three-dimensional regular network; the distance between the states
was R = 3 nm. The size of the simulation sample was 0.3 µm × 0.3 µm × 0.6 µm (i.e.
100 × 100 × 200 localized states). Every localized state i is characterized by its position
in the network xlmn and its energy Ei .

(3) The phonon frequency νph = 1012 Hz.
(4) The value of 2αR = 3, 5, 7, 9, 11, 13 was taken (α is the decay of the electron localized

wavefunction).
(5) The distribution of the state energies is the normal one. The standard deviation of energetic

distribution σE was assumed to change in the range 0.01–0.16 eV.
(6) The temperature was assumed to change in the range 100–500 K.
(7) The probability of a jump between state i and state j was taken in the form [15]:

pij = νph exp(−2αRij ) exp

(−(Ej − Ei − eF (xj − xi))

kT

)

for Ej − Ei − eE(xj − xi) > 0 (8a)

pij = νph exp(−2αRij ) for Ej − Ei − eE(xj − xi) � 0 (8b)

where e is the electron charge, F is the intensity of electric field, Ei,Ej are the energies
of i and j states and xi, xj are the positions of the states measured along the electric field.

(8) It is assumed that at the initial moment (t = 0) a number of carriers is injected into the
sample and localized at the states of the first surface plane. The number of charge carriers
was a few hundred, usually between 100 and 300. The shape of the current pulse was
independent of the number of injected carriers provided that the number was great enough
to give a smooth current pulse.

(9) The shape of current pulses was calculated using [16]:

i(t) ∝ − 1

n0

d

dt

( ∫ D

0
n(x, t) dx

)
+

1

n0D

d

dt

( ∫ D

0
xn(x, t) dx

)
(9)

where n(x, t) is the concentration of charge carriers at the distance x from the top electrode
at the time t , n0 is the total number of injected carriers and D is the sample thickness.

3. Short description of algorithm of simulation

The starting point of the simulation is the initial position of all charge carriers injected into the
sample. The simulation consists of the following main steps:

(1) Registration of the initial position of all charge carriers.
(2) Calculation of probability of all jumps to the nearest neighbouring states for all the carriers.
(3) Stochastic selection of a jump for execution for every charge carrier. The selection takes

into account the relative probability of all jumps resulting from equations (8a) and (8b).
(4) Calculation of the positions of every carrier after execution of the selected jumps and

calculation of the time of execution of every executed jump.
(5) The history of each charge carrier can be calculated in this way. This history enables us

to obtain the position of all carriers for a chosen set of moments (for instance the position
for every 8 ns was registered in the case of data shown in figure 8). Having the positions
it is possible to obtain the current pulse from equation (9).
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Figure 1. Current against time for σE = 0.01 eV, T = 300 K, 2αR = 3. Simulation carried out
for the ordinary time-of-flight experiment. The current pulse is a typical example of Gaussian-like
transport of charge.

4. Results of simulation

4.1. Simulation of transport under closed circuit conditions

In the case of complex computer simulations it is very important to test the algorithm used. In
order to confirm the correctness of the algorithm used the simulation of a classical time-of-flight
experiment was carried out. The simulation under closed circuit conditions was carried out for
the voltage 6 V, which means that the electric field was equal to 107 V m−1. Figures 1 and 2
show the current pulses for the standard deviation describing the width of the narrow band of
states σE = 0.01 eV and 0.13 eV respectively. Figure 3 shows the data presented in figure 2
transformed to a double logarithmic scale. Figure 1 is a typical example of Gaussian-like
transport of charge. The ‘kink’ on the current curve (in a linear scale) is quite clearly marked.
Figure 2 corresponds to a classical dispersive transport, which is confirmed by figure 3. The
curve shown in figure 3 may be described by equations (2) and (3), the sum of the slopes of the
two parts being very close to −2. The following criteria resulting from the SM model were
assumed to classify the pulses obtained from the simulation:

• No ‘kink’ on the current curve in a linear scale and the sum of slopes in the double
logarithmic scale equal to −2 classifies the discharge as dispersive transport.

• Other cases are classified to non-dispersive transport.

Figure 4 shows the regions of dispersive and non-dispersive transport depending on the
values of σE and temperature. In general the dispersive transport occurs for the higher values
of σE and the lower temperatures. The classical (or Gaussian-like) type of transport, i.e.
the transport showing a ‘kink’ in the current pulse, tends to occur at the lower values of σE

and the higher temperatures. This result is in general agreement with the results obtained
by Borsenberger et al [17]. Some results in the area close to the border line are difficult for
classification because on one hand they do not have an easily noticeable ‘kink’ in the current
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Figure 2. Current against time for σE = 0.13 eV, T = 300 K, 2αR = 3. Simulation carried out
for the ordinary time-of-flight experiment. The current pulse is an example of dispersive transport
(see also figure 3).

Figure 3. Log(I ) versus log(t) for σE = 0.13 eV, T = 300 K, 2αR = 3. The sum of slopes of
the two parts of current curve is very close to −2.

pulse, but on the other hand the sum of slopes in the double logarithmic scale is not equal to
−2. These results were classified as examples of non-dispersive transport.

In the case of hopping transport in a narrow band of localized states the drift mobility may
be described by [18]:

µ = (1/6)(eR2/kT )vph exp(−2αR) exp(−W/kT ) (10)

where W is the effective activation energy related to the width of the band of localized states. It
may be supposed that the activation energy W should be comparable to the standard deviation
σE , but the relation is not known precisely. Comparing the values of mobility obtained from
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Figure 4. The transition from non-dispersive to dispersive transport in the investigated hopping
systems. 2αR = 3.

Figure 5. The relations between the activation energy of mobility and the standard deviation σE
for various values of 2αR. The relations may be well described by the following linear equations:
for 2αR = 3 W = 0.3151σE + 0.0021 eV; for 2αR = 5 W = 0.6494σE − 0.003 eV; for 2αR = 7
W = 1.0395σE − 0.0092 eV.

the simulation with the values resulting from equation (10) one should obtain confirmation (or
negation) of correctness of the algorithm used. The problem is how to determine the value of
W in the case of transport in a narrow band of localized states given by a normal distribution.
For instance, assuming W = 2σE or W = 4σE we obtain the ratio of the resulting mobilities
µ(2σE)/µ(4σE) (at T = 300 K) close to one order of magnitude for σE = 0.03 eV and
exceeding two orders of magnitude for σE = 0.07 eV. Such a sensitivity of the exponential
function to the value of W makes the problem of comparison rather difficult. In this situation
it is necessary to find the relation between the effective activation energy W and the standard
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Figure 6. The relations between the activation energy of mobility and the standard deviation σE
for various values of 2αR. The relations may be well described by the following linear equations:
for 2αR = 9 W = 1.0366σE − 0.0079 eV; for 2αR = 11 W = 1.2716σE − 0.0141 eV; for
2αR = 13 W = 1.6029σE − 0.0192 eV.

deviation σE in order to compare the theoretical (µtheor ) and simulated (µTOF ) values of drift
mobility. Using the results of simulations of the TOF experiment these relations have been
determined (by finding the activation energy for various values of σE). Figures 5 and 6 show
the obtained relations between the activation energy W and the standard deviation σE for
various values of the localization parameter 2αR. The relations prove to be well described by
the linear formulae:

W = aσE + b (11)

where a and b are parameters dependent on the value of 2αR and are given by:

a = 0.1186 × 2αR + 0.037 (12)

b = (−0.002 × 2αR + 0.0073) eV. (13)

Using the above W(σE) dependences the comparison of the mobility resulting from the
simulation (µTOF ) and equation (10) (µtheor ) was made. The ratio µTOF /µtheor was found
to be close to unity. Summarizing the results of the simulations of the TOF experiment we
obtain:

• Gaussian-like pulses for smaller values of the standard deviation σE and higher
temperatures;

• typical dispersive pulses for greater values of σE and lower temperatures (as expected, see
for instance [17]). The dispersive pulses are well described by SM theory;

• values of the drift mobility being in good agreement with the theoretical expectations
resulting from equation (10).

The above summary strongly justifies the conclusion that the algorithm used correctly simulates
the charge transport in the assumed hopping system.
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Figure 7. Discharge under open circuit conditions for various standard deviations of the energetic
distribution of the localized states. 2αR = 3.

4.2. Simulation of discharge under open circuit conditions

Figures 7 and 8 show the results of simulated discharge under open circuit conditions. Figure 7
shows the results of simulation at 300 K for various values of the standard deviation σE and
figure 8 shows the discharge for the standard deviation σE = 0.08 eV at various temperatures.
It results from the data obtained that:

(1) The discharge is well described by equations (4)–(7) for the low values of the standard
deviation σE , i.e. for these values of σE the discharge curve consists of two different parts
including the straight-line one for the initial part of discharge. The contribution of the
straight-line part of the discharge decreases with increasing standard deviation σE , which
results from non-classical development of the charge packet.

(2) With increasing temperature the contribution of the straight-line part of the discharge
increases, i.e. equations (4)–(7) describe the discharge better for the higher temperatures.

It results from the above statements that the increasing contribution of off-diagonal disorder
(i.e. the increasing value of σE) leads to increasing discrepancy between the discharge pulses
and the Batra model. According to equations (4)–(7) the transit time ttr of charge carriers
corresponds to the voltage V (ttr ) = 0.5 V0 (V0 is the initial voltage). The transit time is used
to obtain the drift mobility µ1/2 estimated from the open circuit discharge. This method of
estimation of the drift mobility might be also used for the pulses which differ to some extent
from the classical pulses resulting from the Batra model. The question arises of what is the
relation between the mobility µ1/2 obtained from such an estimation of the transit time in the
assumed hopping system and the real drift mobility. This relation (if known) should enable
us to interpret the voltage pulses obtained under open circuit conditions in poorly conducting
hopping systems.

There are two ways to find the relation between the mobility µ1/2 obtained from the
simulation under open circuit conditions and the real drift mobility. The first one is to compare
µ1/2 and the mobility resulting from equation (10). The second one is to compare µ1/2 and
the mobility obtained from the simulation of the classical TOF experiment µTOF . In the latter
case the mobility obtained for the TOF experiment is considered to be the real drift mobility of
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Figure 8. Discharge under open circuit conditions for various values of temperature. The energetic
standard deviation σE = 0.08 eV, 2αR = 3.

Table 1. The ratioµreal/µ1/2 for various values of the localization parameter 2αR and the standard
deviation σE at T = 100 K.

2αR σE = 0.01 eV 0.02 eV 0.03 eV 0.04 eV 0.05 eV 0.06 eV 0.07 eV 0.08 eV

3 1.58 1.639 2.03 2.11 — — — —
5 1.81 2.35 2.77 3.82 4.74 — — —
7 2.19 3.18 3.94 3.62 5.01 — — —
9 2.02 2.78 — — — — — —

11 1.80 — — — — — — —
13 1.38 — — — — — — —

charge carriers (µreal) in the assumed hopping system. Using the first way one must take into
account that any inaccuracy of determination of W(σE) (W is necessary to use equation (10))
leads to some systematic error of the comparison. The second way of comparison enables
us to avoid any systematic errors, because the only difference between the two simulations is
the kind of simulated experiment. In other words the influence of non-Gaussian development
of the packet of charge carriers on the discharge under open circuit conditions is the only
factor taken into account in the second way of comparison. For this reason the second way of
comparison was chosen in order to test the applicability of Batra’s equations for interpretation
of open circuit discharge in the hopping system. The presented results (see tables 1–5) are
limited to the cases of Gaussian-like transport (i.e. to those cases for which a detectable ‘kink’
on current pulses in the classical TOF experiment was found). The cases of dispersive transport
will be a subject of further investigations.

The following conclusions result from the data presented in tables 1–5:

(1) The ratio µreal/µ1/2 depends both on the standard deviation σE and the localization
parameter 2αR. The latter dependence is not pronounced strongly and has its maximum
for 2αR between 5 and 9.
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Table 2. The ratioµreal/µ1/2 for various values of the localization parameter 2αR and the standard
deviation σE at T = 200 K.

2αR σE = 0.01 eV 0.02 eV 0.03 eV 0.04 eV 0.05 eV 0.06 eV 0.07 eV 0.08 eV

3 1.28 1.329 1.73 1.57 2.05 — — —
5 2.08 1.94 1.50 2.59 2.43 2.17 — —
7 1.96 2.17 2.18 2.36 — — — —
9 1.81 1.85 2.22 — — — — —

11 1.74 2.07 2.31 2.41 2.77 — — —
13 1.538 1.86 1.84 2.02 1.93 3.02 — —

Table 3. The ratioµreal/µ1/2 for various values of the localization parameter 2αR and the standard
deviation σE at T = 300 K.

2αR σE = 0.01 eV 0.02 eV 0.03 eV 0.04 eV 0.05 eV 0.06 eV 0.07 eV 0.08 eV

3 1.31 1.38 1.58 1.41 1.62 1.85 1.83 —
5 2.06 2.43 2.50 2.17 2.65 2.38 — —
7 2.61 2.56 2.31 2.57 1.88 — — —
9 1.81 1.85 2.22 — — — — —

11 1.64 1.80 1.78 1.96 2.15 2.2 1.89 —
13 1.78 1.74 1.66 2.11 1.97 2.06 2.19 2.12

Table 4. The ratioµreal/µ1/2 for various values of the localization parameter 2αR and the standard
deviation σE at T = 400 K.

2αR σE = 0.01 eV 0.02 eV 0.03 eV 0.04 eV 0.05 eV 0.06 eV 0.07 eV 0.08 eV

3 1.34 1.30 1.46 1.41 1.49 1.50 1.53 —
5 1.99 1.65 1.88 2.11 2.22 2.64 — —
7 2.83 2.80 2.90 2.50 3.16 — — —
9 1.93 2.16 1.90 2.16 2.13 — — —

11 1.68 1.84 1.76 1.69 1.83 1.78 1.71 —
13 1.54 1.72 1.70 1.96 1.78 1.97 1.94 1.89

Table 5. The ratioµreal/µ1/2 for various values of the localization parameter 2αR and the standard
deviation σE at T = 500 K.

2αR σE = 0.01 eV 0.02 eV 0.03 eV 0.04 eV 0.05 eV 0.06 eV 0.07 eV 0.08 eV

3 1.08 1.01 1.08 0.96 0.98 1.04 1.04 —
5 2.02 2.14 2.06 1.78 2.11 2.44 — —
7 2.01 2.15 2.26 2.59 2.06 — — —
9 1.93 2.17 1.90 2.16 2.13 — — —

11 1.69 1.82 1.80 1.70 1.81 1.89 1.71 —
13 1.55 1.62 1.65 1.91 1.60 2.02 1.83 —

(2) The ratio µreal/µ1/2 tends to increase with increasing value of σE .
(3) The ratio µreal/µ1/2 tends to decrease with increasing temperature. For 100 K the ratio

becomes quite remarkable and is close to 5 for 2αR = 5–7 and σE = 0.04–0.05 eV.

Measurements of the drift mobility in diamond-like carbon films [9–11] are an example of
application of the discharge under open circuit conditions for hopping systems. At T = 300 K
the mobility was measured to be 7.1 × 10−6 cm2 V−1 s−1, the activation energy in the
temperature range between 200 K and 300 K was found to be 0.03 eV. The value of 2αR
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for amorphous carbon structures was estimated to be in the range 5–7 [19] (it is necessary to
know the localization parameter 2αR in order to estimate σE which in turn is necessary to
apply the data shown in the tables). Using the corresponding values of µreal/µ1/2 shown in
table 3 we find the expected real value of the mobility equal to 1.8 × 10−5 cm2 V−1 s−1 at
T = 300 K.

5. Conclusions

The following conclusions resulting from the presented results may be put forward:

• Using the model presented by Batra et al (equations (4)–(7)) for interpretation of discharge
under open circuit conditions in hopping narrow-band systems with off-diagonal disorder
may lead to a wrong estimation of drift mobility. The ratio of the real mobility µreal to the
mobility obtained from application of the Batra model µ1/2 depends on the temperature,
the standard deviation σE describing the energetic distribution of localized states and on
the localization parameter 2αR.

• The ratio µreal/µ1/2 is close to 5 for T = 100 K and 2αR = 5–7. For the higher
temperatures the ratio is close to 2 for the most values of 2αR except for 2αR = 3,
for which the ratio becomes close to 1 for the higher temperatures. In the last cases the
Batra model well describes the discharge under open circuit conditions in the discussed
hopping system.

It may be supposed that the ratio µreal/µ1/2 should increase for these higher values of the
standard deviation σE for which the dispersive transport occurs. Applicability of the discharge
under open circuit conditions for the region of dispersive transport will be a subject of further
investigations.
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